Patrick Zulian

Institute of Computational Science
Università della Svizzera italiana (USI - University of Lugano)
Via Giuseppe Buffi 13
CH-6904 Lugano

Patrick Zulian

Postdoctoral researcher

Group Krause - High Performance Methods for Numerical Simulation in Science, Medicine and Engineering

View linkedin profile


Parametric finite elements with bijective mappings

OpenCL Based Parallel Algorithm for RBF-PUM Interpolation

A Parallel Approach to the Variational Transfer of Discrete Fields between Arbitrarily Distributed Unstructured Finite Element Meshes 

Vestige: A Visualization Framework for Engineering Geometry-Related Software



Geometry-Aware FEM in Computational Mechanics (SNF)

  • Principal Investigators: Prof. Dr. Rolf Krause, Prof. Dr. Kai Hormann
  • Collaborators: Teseo Schneider

In finite element simulations, the handling of geometrical objects is a critical aspect in both serial and parallel software environments.
The main focus of my research is to investigate two topics related to this aspect, information transfer and parametric finite elements.

The first topic is about stable and efficient techniques for the transfer of discrete fields between non matching volume or surface meshes are an essential ingredient for the discretization and numerical solution of coupled multi-physics or multi-scale problems, and mesh refinement or remeshing. In particular, L2-projections allows for the transfer of discrete fields between unstructured meshes, both in the volume and on the surface. We developed an algorithm for parallelizing the assembly of the L2-transfer operator for unstructured meshes which are arbitrarily distributed among different processes. This algorithm requires no a priori information on the geometrical relationship between the different meshes.

The second topic is about the possible applications of mixing parametric finite-elements together with methods from geometry-processing, such as barycentric coordinates and bijective mappings between polygons or polyhedra.

These ideas are to be developed within MOONoLith (Multipurpose Object Oriented Numerics Library).



sec 8 fig 4a         target21   

linear elasticity with coarse solution         sec 8 fig 5b


logo cscs

This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Read more